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Abstract: Automatic methods of classification of animal sounds offer
many advantages including speed and consistency in processing massive
quantities of data. Calculations have been carried out on a set of 75 calls of
Northern Resident killer whales, previously classified perceptually (human
classification) into seven call types, using, hidden Markov models (HMMs)
and Gaussian mixture models (GMMs). Neither of these methods has been
used previously for classification of marine mammal call types. With cepstral
coefficients as features both HMMs and GMMs give over 90% agreement
with the perceptual classification, with the HMM over 95% for some cases.
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1. Introduction

The automatic classification of marine mammal sounds is very attractive as a means of assess-
ing massive quantities of recorded data, freeing humans, and offering rigorous and consistent
output. Calculations on a set of vocalizations of Northern Resident killer whales using dynamic
time warping were reported recently. (Brown and Miller, 2006, 2007). Since this method re-
quires the time-consuming preprocessing measurement of the frequency contours, the methods
of Gaussian mixture models (GMMs) and hidden Markov models (HMM:s) have been explored.
These calculations can be applied directly to the time-frequency decomposition of the recorded
signals and have not been used previously for the classification of call types of marine mam-
mals.

2. Background
2.1 Gaussian mixture models

The GMM is a commonly used estimate of the probability density function used in statistical
classification systems. GMM classifiers (Duda ef al., 2001) are well known for their ability to
model arbitrarily complex distributions with multiple modes and are effective classifiers for
many tasks.

Although GMMs have found widespread use in speech research, primarily for speaker
recognition (Reynolds and Rose, 1995 and references therein), and have been used in other
fields, for example, for musical instrument identification (Brown, 1999 and Brown ef al., 2001),
there is only one report in animal bioacoustic research (Roch et al., 2007).

Roch et al. (2007) used GMMs to distinguish among three dolphin species obtaining
67%—75% accuracy. In this study they vary the number of mixtures from 64 to 512, in steps
differing by a factor of 2. Best results were obtained with 256 mixtures using 64 cepstral coef-
ficients as features on sounds of duration from 1 to 30 s.

The cepstrum is the Fourier transform of the log magnitude spectrum (Oppenheim and
Schafer, 1975); it involves two transforms which makes it computationally more intensive than
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fast Fourier transform (FFT) based calculations. The choice of cepstra as features has been
particularly successful in characterizing the vocal tract resonances which identify individual
speakers, speech, or vowels. See Rabiner and Schafer, 1978 and Rabiner and Huang, 1993 for a
discussion of the use of cepstra for speech applications.

2.2 Hidden Markov models

The HMM is widely used in human speech processing and is described in tutorials by Rabiner
and Juang (1986) and Rabiner (1989). An excellent introuction to HMMSs can be found on the
website of R. D. Boyle' with an introduction for animal bioacousticians in Clemins (2005). A
HMM models temporal data in as a sequence of states. States are usually defined as separate
GMMs, and their successive usage across time is governed by a transition matrix. The transition
matrix is learned from training data and defines the probabilities of moving from one state to
another, ensuring that the data are optimally explained. Ultimately, what the HMM does is
create a sequence of GMM models to explain the input data, thus being sensitive to temporal
changes.

HMMs have been used far more extensively than GMMs in the field of animal bioa-
coustics. The principal difference in the two methods is that the HMM takes account of the
temporal progression of the sound and is thus able to describe the structure of the call. The
GMM treats the entire sound as a single entity with unique spectral properties which character-
ize each class. Since the HMM takes account of the temporal structure of the call, it uses the
temporal variation of the calls as additional information to disambiguate among call types. In
comparison a GMM could not distinguish a call type from itself played backwards since it does
not examine the temporal structure.

Weisburn ef al. (1993) used a HMM for detecting bowhead whale notes with the three
largest peaks in the FFT as features. Kogan and Margoliash (1998) compared the methods of
HMM and dynamic time warping for automated recognition of bird song elements and found
that the HMM was more robust. Mellinger and Clark (2000) compared spectrogram correlation
to HMMs on the task of recognizing bowhead whale calls finding that the spectrogram worked
marginally better. Datta and Sturtivant (2002) used HMMs to identify three different groups of
dolphin whistles, finding that one group was very distinct from the other two.

More recently HMMs have been used for classification or detection of vocalizations
by African elephants (Clemins et al., 2005; Clemins and Johnson, 2006), red deer (Reby et al.,
2006), and the ortolan bunting (Trawicki et al., 2005, Tao et al., 2008). There have been no
computations with HMMs or GMMs on automatic classification of call types of marine mam-
mal sounds.

3. Calculations and results

The features chosen for all of the calculations were cepstral coefficients and their temporal
derivatives. These were calculated with the program melcepst available with the MATLAB tool-
box VOICEBOX.” The sample rate was 44 100 samples/s with each sound divided into 23 ms
segments for the calculations. The HMM/GMM computations were carried out with software
by Paris Smaragdis. The training set for all classifications consisted of all the sounds except the
one being classified, called the “leave one out” method. Preliminary results were reported by
Brown and Smaragdis (2008).

3.1 GMM results

Results for the GMM calculations are given in Fig. 1 with the number of Gaussians in the
probability distributions varying from 1 to 6 and the number of cepstral coefficients from 8§ to
30. The calculation diverges for more than 4 Gaussians with 18 or more features due to model
overfitting.

Agreement with the perceptual (human classification) results were over 85% with
18-30 features. The calculation is not highly sensitive to the number of Gaussians. Best results
were obtained for 30 features with two Gaussians and gave 92% agreement.
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Fig. 1. (Color online) Gaussian mixture model results showing the dependence on the number of features (cepstral
coefficients) and the number of Gaussians in the estimate of the probability density function.

3.2 HMM results

For the HMM classification, a left-to-right model was used, and there were three variable pa-
rameters rather than two. The number of Gaussians in the probability function was varied from
1 to 4 with the results consistently about 5% better for one Gaussian than two and from 3% to
10% better for two Gaussians than three. The number of states was varied from 5 to 17 and the
number of features from 8 to 42 with results given in Fig. 2. Excellent agreement with the
perceptual classification is obtained over a wide range of these paramters with over 90% for
from 18 to 42 features and from 9 to 17 states. Truly outstanding agreement of over 95% was
obtained for 24 to 30 features and 13 to 17 states.
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Fig. 2. (Color online) Hidden Markov model results showing the dependence on the number of features (cepstral
coefficients) and the number of states in the model with one Gaussian in the estimate of the probability density
function.
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4. Conclusion

These results demonstrate that both GMMs and HMMs are highly successful in the task of
automatic classification of killer whale call types, with the performance of the HMM being
truly outstanding. Even more impressive is the wide range of parameters over which the calcu-
lations agree with the perceptual classification indicating a very robust calculation and great
promise for successful extension to other data sets and other species.
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